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Why a game engine?



A game engine is a controlled, self-contained 
spatial, physical environment that can (closely) 

replicate (enough of) the real world (to be useful).
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Basics of Unity



Live Demo



ML-Agents Fundamentals



–Unity ML-Agents Toolkit Overview

“The ML-Agents toolkit is mutually beneficial for both game developers and 
AI researchers as it provides a central platform where advances in AI can be 

evaluated on Unity’s rich environments and then made accessible to the 
wider research and game developer communities.” 

https://github.com/Unity-Technologies/ml-agents/





Academy



Brain Academy



AgentBrain Academy



AgentBrain Academy



Academy

• Orchestrates the observations and decision making process


• Sets environment-wide parameters, like speed and rendering quality


• Talks to the external communicator


• Make sure agent(s) and brain(s) are in sync


• Coordinates everything



Brain
• Holds logic for the Agent’s decision making


• Determines which action(s) the Agent should take at each instance


• Receives observations from the Agent


• Receives rewards from the Agent


• Returns actions to the Agent


• Can be controlled by a human, a training process, or an inference process



Agent

• Attached to a Unity Game Object


• Generates observations


• Performs actions (that it’s told to do by a brain)


• Assigns rewards 


• Linked to one Brain



External 
Communicator





None of these concepts are new
Some might have new names



Training Methods



Imitation Learning

Reinforcement Learning

Neuroevolution

… and many other learning methods



• Signals from rewards


• Trial and error


• Simulate at high speeds


• Agent becomes optimal

Imitation LearningReinforcement Learning

• Learning through 
demonstrations


• No rewards


• Simulate in real-time 
(mostly)


• Agent becomes human-like 



RewardsActions Observations
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Abstract

Recent advances in Deep Reinforcement Learning and Robotics have been driven
by the presence of increasingly realistic and complex simulation environments.
Many of the existing platforms, however, provide either unrealistic visuals, inac-
curate physics, low task complexity, or a limited capacity for interaction among
artificial agents. Furthermore, many platforms lack the ability to flexibly configure
the simulation, hence turning the simulation environment into a black-box from
the perspective of the learning system. Here we describe a new open source toolkit
for creating and interacting with simulation environments using the Unity platform:
Unity ML-Agents Toolkit1. By taking advantage of Unity as a simulation platform,
the toolkit enables the development of learning environments which are rich in
sensory and physical complexity, provide compelling cognitive challenges, and
support dynamic multi-agent interaction. We detail the platform design, commu-
nication protocol, set of example environments, and variety of training scenarios
made possible via the toolkit.

1 Introduction

1.1 Background

In recent years, there have been significant advances in the state of Deep Reinforcement Learning
research and algorithm design (Mnih et al., 2015; Schulman et al., 2017; Silver et al., 2018; Espeholt
et al., 2018). Essential to this rapid development has been the presence of challenging, easy to
use, and scalable simulation platforms, such as the Arcade Learning Environment (Bellemare et al.,
2013), VizDoom (Kempka et al., 2016), Mujoco (Todorov et al., 2012), and others (Beattie et al.,
2016; Johnson et al., 2016). The existence of the Arcade Learning Environment (ALE), for example,
which contained a set of fixed environments, was essential for providing a means of benchmarking
the control-from-pixels approach of the Deep Q-Network (Mnih et al., 2013). Similarly, other
platforms have helped motivate research into more efficient and powerful algorithms (Oh et al.,
2016; Andrychowicz et al., 2017). These simulation platforms serve not only to enable algorithmic
improvements, but also as a starting point for training models which may subsequently be deployed
in the real world. A prime example of this is the work being done to train autonomous robots within

1https://github.com/Unity-Technologies/ml-agents
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https://arxiv.org/abs/1809.02627



The Process

Imitation Learning



Step by Step
• Pick a task


• Create an environment


• Create/identify the agent


• Create an academy


• Pick a learning/training method


• Create observations, rewards, and actions


• Pick algorithms, tune, and train



Step by Step
A car that drives by itself

Cartoony race track

Our self-driving car

A bog-standard Academy

Imitation Learning

Raycasts, Modify transform

Train!

• Pick a task


• Create an environment


• Create/identify the agent


• Create an academy


• Pick a learning/training method


• Create observations, rewards, and actions


• Pick algorithms, tune, and train





The Environment



The Environment



Live Demo





Imitation Learning

• Learning through 
demonstrations


• No rewards


• Simulate in real-time 
(mostly)


• Agent becomes human-like 



So What?



Imitation LearningReinforcement Learning

• Signals from rewards


• Trial and error


• Simulate at high speeds


• Agent becomes optimal

• Learning through 
demonstrations


• No rewards


• Simulate in real-time 
(mostly)


• Agent becomes human-like 



Rewards in Actions

RewardsActions



Proximal Policy Optimization Algorithms
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Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

1 Introduction

In recent years, several di�erent approaches have been proposed for reinforcement learning with
neural network function approximators. The leading contenders are deep Q-learning [Mni+15],
“vanilla” policy gradient methods [Mni+16], and trust region / natural policy gradient methods
[Sch+15b]. However, there is room for improvement in developing a method that is scalable (to
large models and parallel implementations), data e�cient, and robust (i.e., successful on a variety
of problems without hyperparameter tuning). Q-learning (with function approximation) fails on
many simple problems1 and is poorly understood, vanilla policy gradient methods have poor data
e�ency and robustness; and trust region policy optimization (TRPO) is relatively complicated,
and is not compatible with architectures that include noise (such as dropout) or parameter sharing
(between the policy and value function, or with auxiliary tasks).

This paper seeks to improve the current state of a�airs by introducing an algorithm that attains
the data e�ciency and reliable performance of TRPO, while using only first-order optimization.
We propose a novel objective with clipped probability ratios, which forms a pessimistic estimate
(i.e., lower bound) of the performance of the policy. To optimize policies, we alternate between
sampling data from the policy and performing several epochs of optimization on the sampled data.

Our experiments compare the performance of various di�erent versions of the surrogate objec-
tive, and find that the version with the clipped probability ratios performs best. We also compare
PPO to several previous algorithms from the literature. On continuous control tasks, it performs
better than the algorithms we compare against. On Atari, it performs significantly better (in terms
of sample complexity) than A2C and similarly to ACER though it is much simpler.

1
While DQN works well on game environments like the Arcade Learning Environment [Bel+15] with discrete

action spaces, it has not been demonstrated to perform well on continuous control benchmarks such as those in

OpenAI Gym [Bro+16] and described by Duan et al. [Dua+16].

1
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https://arxiv.org/abs/1707.06347



TensorFlow



“That seems more useful.”

–You, probably.



Imitation Learning

• Learning through 
demonstrations


• No rewards


• Simulate in real-time 
(mostly)


• Agent becomes human-like 

• Signals from rewards


• Trial and error


• Simulate at high speeds


• Agent becomes optimal

Reinforcement Learning







Demos







Actions

X-rotation

Z-rotation



Observations

        AddVectorObs(gameObject.transform.rotation.z);

        AddVectorObs(gameObject.transform.rotation.x);

        AddVectorObs(ball.transform.position - gameObject.transform.position);

        AddVectorObs(ballRb.velocity);



Rewards

       if ((ball.transform.position.y - gameObject.transform.position.y) < -2f || 
            Mathf.Abs(ball.transform.position.x - gameObject.transform.position.x) > 3f || 
            Mathf.Abs(ball.transform.position.z - gameObject.transform.position.z) > 3f) 
        { 
            Done(); 
            SetReward(-1f); 
        } 
        else 
        { 
            SetReward(0.1f); 
        }









Useful…?
• Training behaviours, rather than coding 

behaviours


• Exploring or training behaviours in physical, 
spatial, simulated scenarios


• Self-driving cars


• Warehouses, factories


• Low-risk, low-cost way to test visual, 
physical, cognitive machine learning 
problems


• “Free” visualisation!



A game engine is a controlled, self-contained 
spatial, physical environment that can (closely) 

replicate (enough of) the real world (to be useful).

(but it’s also useful for non-physical problems that you might be able  
to make a physical representation of and observe.)



Thank you
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At #OSCON? Join us for a half-day tutorial on Unity Machine Learning!

https://lab.to/AIConfNYC2019


