
Game Engines and Machine Learning

Game Engines and
Machine Learning

Data Science Game Development

@TheMartianLife @The_McJones @parisba

Mars Geldard, Jonathon Manning,
Paris Buttfield-Addison & Tim Nugent

Practical Artificial
Intelligence with

Swift
From Fundamental Theory to Development
of AI-Driven Apps

Why a game engine?

A game engine is a controlled, self-contained
spatial, physical environment that can (closely)

replicate (enough of) the real world (to be useful).

Cognitive Physical Visual

Basics of Unity

ML-Agents Fundamentals

The Process

Live Demo

So What?

Basics of Unity

Live Demo

ML-Agents Fundamentals

–Unity ML-Agents Toolkit Overview

“The ML-Agents toolkit is mutually beneficial for both game developers and
AI researchers as it provides a central platform where advances in AI can be

evaluated on Unity’s rich environments and then made accessible to the
wider research and game developer communities.”

https://github.com/Unity-Technologies/ml-agents/

Academy

Brain Academy

AgentBrain Academy

AgentBrain Academy

Academy

• Orchestrates the observations and decision making process

• Sets environment-wide parameters, like speed and rendering quality

• Talks to the external communicator

• Make sure agent(s) and brain(s) are in sync

• Coordinates everything

Brain
• Holds logic for the Agent’s decision making

• Determines which action(s) the Agent should take at each instance

• Receives observations from the Agent

• Receives rewards from the Agent

• Returns actions to the Agent

• Can be controlled by a human, a training process, or an inference process

Agent

• Attached to a Unity Game Object

• Generates observations

• Performs actions (that it’s told to do by a brain)

• Assigns rewards

• Linked to one Brain

External
Communicator

None of these concepts are new
Some might have new names

Training Methods

Imitation Learning

Reinforcement Learning

Neuroevolution

… and many other learning methods

• Signals from rewards

• Trial and error

• Simulate at high speeds

• Agent becomes optimal

Imitation LearningReinforcement Learning

• Learning through
demonstrations

• No rewards

• Simulate in real-time
(mostly)

• Agent becomes human-like

RewardsActions Observations

Imitation LearningReinforcement Learning

• Signals from rewards

• Trial and error

• Simulate at high speeds

• Agent becomes optimal

• Learning through
demonstrations

• No rewards

• Simulate in real-time
(mostly)

• Agent becomes human-like

External
Communicator

Unity: A General Platform for Intelligent Agents

Arthur Juliani
Unity Technologies

arthurj@unity3d.com

Vincent-Pierre Berges
Unity Technologies

vincentpierre@unity3d.com

Esh Vckay
Unity Technologies
esh@unity3d.com

Yuan Gao
Unity Technologies

vincentg@unity3d.com

Hunter Henry
Unity Technologies

brandonh@unity3d.com

Marwan Mattar
Unity Technologies

marwan@unity3d.com

Danny Lange
Unity Technologies

dlange@unity3d.com

Abstract

Recent advances in Deep Reinforcement Learning and Robotics have been driven
by the presence of increasingly realistic and complex simulation environments.
Many of the existing platforms, however, provide either unrealistic visuals, inac-
curate physics, low task complexity, or a limited capacity for interaction among
artificial agents. Furthermore, many platforms lack the ability to flexibly configure
the simulation, hence turning the simulation environment into a black-box from
the perspective of the learning system. Here we describe a new open source toolkit
for creating and interacting with simulation environments using the Unity platform:
Unity ML-Agents Toolkit1. By taking advantage of Unity as a simulation platform,
the toolkit enables the development of learning environments which are rich in
sensory and physical complexity, provide compelling cognitive challenges, and
support dynamic multi-agent interaction. We detail the platform design, commu-
nication protocol, set of example environments, and variety of training scenarios
made possible via the toolkit.

1 Introduction

1.1 Background

In recent years, there have been significant advances in the state of Deep Reinforcement Learning
research and algorithm design (Mnih et al., 2015; Schulman et al., 2017; Silver et al., 2018; Espeholt
et al., 2018). Essential to this rapid development has been the presence of challenging, easy to
use, and scalable simulation platforms, such as the Arcade Learning Environment (Bellemare et al.,
2013), VizDoom (Kempka et al., 2016), Mujoco (Todorov et al., 2012), and others (Beattie et al.,
2016; Johnson et al., 2016). The existence of the Arcade Learning Environment (ALE), for example,
which contained a set of fixed environments, was essential for providing a means of benchmarking
the control-from-pixels approach of the Deep Q-Network (Mnih et al., 2013). Similarly, other
platforms have helped motivate research into more efficient and powerful algorithms (Oh et al.,
2016; Andrychowicz et al., 2017). These simulation platforms serve not only to enable algorithmic
improvements, but also as a starting point for training models which may subsequently be deployed
in the real world. A prime example of this is the work being done to train autonomous robots within

1https://github.com/Unity-Technologies/ml-agents

ar
X

iv
:1

80
9.

02
62

7v
1

 [c
s.L

G
]

7
Se

p
20

18

Unity: A General Platform for Intelligent Agents

Arthur Juliani
Unity Technologies

arthurj@unity3d.com

Vincent-Pierre Berges
Unity Technologies

vincentpierre@unity3d.com

Esh Vckay
Unity Technologies
esh@unity3d.com

Yuan Gao
Unity Technologies

vincentg@unity3d.com

Hunter Henry
Unity Technologies

brandonh@unity3d.com

Marwan Mattar
Unity Technologies

marwan@unity3d.com

Danny Lange
Unity Technologies

dlange@unity3d.com

Abstract

Recent advances in Deep Reinforcement Learning and Robotics have been driven
by the presence of increasingly realistic and complex simulation environments.
Many of the existing platforms, however, provide either unrealistic visuals, inac-
curate physics, low task complexity, or a limited capacity for interaction among
artificial agents. Furthermore, many platforms lack the ability to flexibly configure
the simulation, hence turning the simulation environment into a black-box from
the perspective of the learning system. Here we describe a new open source toolkit
for creating and interacting with simulation environments using the Unity platform:
Unity ML-Agents Toolkit1. By taking advantage of Unity as a simulation platform,
the toolkit enables the development of learning environments which are rich in
sensory and physical complexity, provide compelling cognitive challenges, and
support dynamic multi-agent interaction. We detail the platform design, commu-
nication protocol, set of example environments, and variety of training scenarios
made possible via the toolkit.

1 Introduction

1.1 Background

In recent years, there have been significant advances in the state of Deep Reinforcement Learning
research and algorithm design (Mnih et al., 2015; Schulman et al., 2017; Silver et al., 2018; Espeholt
et al., 2018). Essential to this rapid development has been the presence of challenging, easy to
use, and scalable simulation platforms, such as the Arcade Learning Environment (Bellemare et al.,
2013), VizDoom (Kempka et al., 2016), Mujoco (Todorov et al., 2012), and others (Beattie et al.,
2016; Johnson et al., 2016). The existence of the Arcade Learning Environment (ALE), for example,
which contained a set of fixed environments, was essential for providing a means of benchmarking
the control-from-pixels approach of the Deep Q-Network (Mnih et al., 2013). Similarly, other
platforms have helped motivate research into more efficient and powerful algorithms (Oh et al.,
2016; Andrychowicz et al., 2017). These simulation platforms serve not only to enable algorithmic
improvements, but also as a starting point for training models which may subsequently be deployed
in the real world. A prime example of this is the work being done to train autonomous robots within

1https://github.com/Unity-Technologies/ml-agents

ar
X

iv
:1

80
9.

02
62

7v
1

 [c
s.L

G
]

7
Se

p
20

18

https://arxiv.org/abs/1809.02627

The Process

Imitation Learning

Step by Step
• Pick a task

• Create an environment

• Create/identify the agent

• Create an academy

• Pick a learning/training method

• Create observations, rewards, and actions

• Pick algorithms, tune, and train

Step by Step
A car that drives by itself

Cartoony race track

Our self-driving car

A bog-standard Academy

Imitation Learning

Raycasts, Modify transform

Train!

• Pick a task

• Create an environment

• Create/identify the agent

• Create an academy

• Pick a learning/training method

• Create observations, rewards, and actions

• Pick algorithms, tune, and train

The Environment

The Environment

Live Demo

Imitation Learning

• Learning through
demonstrations

• No rewards

• Simulate in real-time
(mostly)

• Agent becomes human-like

So What?

Imitation LearningReinforcement Learning

• Signals from rewards

• Trial and error

• Simulate at high speeds

• Agent becomes optimal

• Learning through
demonstrations

• No rewards

• Simulate in real-time
(mostly)

• Agent becomes human-like

Rewards in Actions

RewardsActions

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov

OpenAI

{joschu, filip, prafulla, alec, oleg}@openai.com

Abstract

We propose a new family of policy gradient methods for reinforcement learning, which al-
ternate between sampling data through interaction with the environment, and optimizing a
“surrogate” objective function using stochastic gradient ascent. Whereas standard policy gra-
dient methods perform one gradient update per data sample, we propose a novel objective
function that enables multiple epochs of minibatch updates. The new methods, which we call
proximal policy optimization (PPO), have some of the benefits of trust region policy optimiza-
tion (TRPO), but they are much simpler to implement, more general, and have better sample
complexity (empirically). Our experiments test PPO on a collection of benchmark tasks, includ-
ing simulated robotic locomotion and Atari game playing, and we show that PPO outperforms
other online policy gradient methods, and overall strikes a favorable balance between sample
complexity, simplicity, and wall-time.

1 Introduction

In recent years, several di�erent approaches have been proposed for reinforcement learning with
neural network function approximators. The leading contenders are deep Q-learning [Mni+15],
“vanilla” policy gradient methods [Mni+16], and trust region / natural policy gradient methods
[Sch+15b]. However, there is room for improvement in developing a method that is scalable (to
large models and parallel implementations), data e�cient, and robust (i.e., successful on a variety
of problems without hyperparameter tuning). Q-learning (with function approximation) fails on
many simple problems1 and is poorly understood, vanilla policy gradient methods have poor data
e�ency and robustness; and trust region policy optimization (TRPO) is relatively complicated,
and is not compatible with architectures that include noise (such as dropout) or parameter sharing
(between the policy and value function, or with auxiliary tasks).

This paper seeks to improve the current state of a�airs by introducing an algorithm that attains
the data e�ciency and reliable performance of TRPO, while using only first-order optimization.
We propose a novel objective with clipped probability ratios, which forms a pessimistic estimate
(i.e., lower bound) of the performance of the policy. To optimize policies, we alternate between
sampling data from the policy and performing several epochs of optimization on the sampled data.

Our experiments compare the performance of various di�erent versions of the surrogate objec-
tive, and find that the version with the clipped probability ratios performs best. We also compare
PPO to several previous algorithms from the literature. On continuous control tasks, it performs
better than the algorithms we compare against. On Atari, it performs significantly better (in terms
of sample complexity) than A2C and similarly to ACER though it is much simpler.

1
While DQN works well on game environments like the Arcade Learning Environment [Bel+15] with discrete

action spaces, it has not been demonstrated to perform well on continuous control benchmarks such as those in

OpenAI Gym [Bro+16] and described by Duan et al. [Dua+16].

1

ar
X

iv
:1

70
7.

06
34

7v
2

 [c
s.L

G
]

28
 A

ug
 2

01
7

https://arxiv.org/abs/1707.06347

TensorFlow

“That seems more useful.”

–You, probably.

Imitation Learning

• Learning through
demonstrations

• No rewards

• Simulate in real-time
(mostly)

• Agent becomes human-like

• Signals from rewards

• Trial and error

• Simulate at high speeds

• Agent becomes optimal

Reinforcement Learning

Demos

Actions

X-rotation

Z-rotation

Observations

 AddVectorObs(gameObject.transform.rotation.z);

 AddVectorObs(gameObject.transform.rotation.x);

 AddVectorObs(ball.transform.position - gameObject.transform.position);

 AddVectorObs(ballRb.velocity);

Rewards

 if ((ball.transform.position.y - gameObject.transform.position.y) < -2f || 
 Mathf.Abs(ball.transform.position.x - gameObject.transform.position.x) > 3f || 
 Mathf.Abs(ball.transform.position.z - gameObject.transform.position.z) > 3f) 
 { 
 Done(); 
 SetReward(-1f); 
 } 
 else 
 { 
 SetReward(0.1f); 
 }

Useful…?
• Training behaviours, rather than coding

behaviours

• Exploring or training behaviours in physical,
spatial, simulated scenarios

• Self-driving cars

• Warehouses, factories

• Low-risk, low-cost way to test visual,
physical, cognitive machine learning
problems

• “Free” visualisation!

A game engine is a controlled, self-contained
spatial, physical environment that can (closely)

replicate (enough of) the real world (to be useful).

(but it’s also useful for non-physical problems that you might be able
to make a physical representation of and observe.)

Thank you

@themartianlife @the_mcjones @parisba

Thank you

@themartianlife @the_mcjones @parisba

Mars Geldard, Jonathon Manning,
Paris Buttfield-Addison & Tim Nugent

Practical Artificial
Intelligence with

Swift
From Fundamental Theory to Development
of AI-Driven Apps

@aiwithswift

At #OSCON? Join us for a half-day tutorial on Unity Machine Learning!

https://lab.to/AIConfNYC2019

